

pairs will all have the same zeros but could have different poles, one can apply the test at a number of node pairs and confidently determine, but not guarantee, that a circuit is stable. Although we have only considered admittances, the same test can be applied to impedances seen looking into the terminals formed when any loop in the circuit is broken. Again, any clockwise Nyquist encirclements of the origin mean that right half plane zeros of the impedances exist and that the circuit is unstable.

REFERENCES

- [1] J. G. Linvill and J. F. Gibbons, *Transistors and Active Circuits*. New York: McGraw-Hill, 1961, ch. 12.
- [2] B. P. Lathi, *Signals, Systems and Communication*. New York: Wiley, 1965, pp. 299-310 and pp. 266-273.

Corrections to “Open Resonator for Precision Dielectric Measurements in the 100-GHz Band”

B. Komiyama, M. Kiyokawa, and T. Matsui

Owing to an error in calculation programming, $\tan \delta$ in Table II in the above paper¹ was calculated as $\phi_d = 0$ in equation (3). $\tan \delta$ in Table II should be changed as follows:

TABLE II
MEASURED PERMITTIVITY AND LOSS TANGENT

Material	t (mm)	f (GHz)	Δ	ϵ_r	$\tan \delta \times 10^4$
Silica	1.46	105.3	1.00	3.799	3.0
Glass (IR grade)	2.94	105.3	1.00	3.800	2.8
	5.12	104.7	1.00	3.800	3.2
				3.800	3.3
				3.800	3.2
MgO	1.04	92.8	1.00	9.809	0.53
				9.813	0.61
AlN	1.12	92.9	1.00	8.289	5.7
	2.18	96.5	1.01	8.290	5.6
				8.296	4.3
				8.297	4.6
BN	1.93	103.0	1.00	5.163	12
				5.163	12

Manuscript received May 14, 1991.

The authors are with the Communications Research Laboratory, KARC, 588-2, Iwaoka, Iwaoka-cho, Nish-ku, Kobe, 674 Japan.
IEEE Log Number 9201730.

¹B. Komiyama, M. Kiyokawa, and T. Matsui, *IEEE Trans. Microwave Theory Tech.*, vol. 39, no. 10, pp. 1792-1796, Oct. 1991.